
Research Statement — Kaya Arro

Results at a glance. My research extends representation stability for FI-modules to
stable ∞-category theory and shows that representation stability can be understood
as a facet of a new functor calculus for FI analogous to Michael Weiss’ orthogonal
calculus introduced in [Wei95]. I define a Taylor tower and Taylor coefficients for
FI-objects and describe structure maps between these coefficients. I prove, in analogy
to a result of Arone and Ching in [AC14], that a Taylor tower is determined by its
Taylor coefficients and these structure maps up to the vanishing of certain Tate
constructions. Over a field of characteristic 0, I give an explicit calculation relating
an FI-module and its coefficients. In a forthcoming generalization of this work, I
show that any ∞-category admitting a Cartesian fibration to FI hosts a similar
functor calculus.

The ∞-categorical perspective on representation stability broadens the subject
in several new directions. First, it reveals a larger class of well-behaved FI-modules,
not strictly representation stable, which deserve consideration in the context of
representation stability. Almost all examples of representation stable FI-modules
of interest arise as the cohomology of some family of objects indexed by FIop and
hence naturally carry extension data. The Taylor coefficients compactly encode
the structure of a representation stable FI-module as well as this extension data.
FI-calculus also sheds light on the behavior of representation stable FI-modules
in the “pre-stable” range. More broadly, FI-calculus allows for the consideration
representation stability in tandem with extraordinary cohomology theories.

Finally, FI-calculus opens the door to myriad future projects and further extensions.
The most important of these is the fact that the most fundamental techniques of
FI-calculus extend to a wide range of domain (∞-)categories other than FI allowing
for the ideas of functor calculus to be applied in a host of new settings. Other
extensions involve establishing theorems relating FI-calculus and Goodwillie calculus
and exploring the possible existence of other cousins of orthogonal calculus with
a longer-term view toward developing a general framework formally unifying FI-
calculus and orthogonal calculus.

Background on ∞-category theory. My research lies within the field of homo-
topy theory, with an especial focus on problems with an ∞-categorical flavor.
Homotopy theory is the branch of mathematics concerned with structures arising
from and applications of invariants which do not distinguish between “weakly equi-
valent” objects of some species – classically, topological spaces, as homotopy theory
emerged from the field of algebraic topology. It is almost always desirable that
structure-preserving functions between objects of interest induce corresponding
functions between invariants – that is to say, in the language of category theory, that
the invariants be functorial – and it was to formalize this behavior that category
theory was introduced.

Because the weak equivalences which appear in homotopy theory are not in
general isomorphisms in the 1-categorical sense but rather a proper generalization
thereof, it can be useful to keep track of data relating the composite of a pair of
“weakly inverse” morphisms to the respective identity morphisms – witnessing the
fact that the pair were “weakly inverse” – and this leads directly to the eponymous
homotopies between morphisms, to be conceptualized as “paths” connecting two
morphisms. In fact, there arise further homotopies between homotopies and so
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on, all of which it is fruitful to keep track of. Grothendieck’s celebrated homotopy
hypothesis postulates that the correct structure for recording this data is a space,
whether in the guise of a topological space, a simplicial set, or some other model,
and categories in which the collections of parallel morphism carry this spatial
structure are called ∞-categories in reference to the existence of homotopies between
homotopies and so on.

The first technology for working with categories equipped with this homotopical
structure was Quillen’s model categories, introduced in [Qui67], and an extremely
robust theory thereof was developed in books such as [Hir09], [Hov07], and others.
Beginning in the 1970s with Boardman and Vogt’s “weak Kan complexes”, introduced
in [BV73], and especially since the beginning of the twenty-first century with, for
example, [Rez00] and [Ber07], other technologies for working with ∞-categories have
been developed and compared. These definitions have a reputation for abstruseness,
but they have the payoff of significantly streamlining many proofs, and – once the
foundations have been dealt with – largely succeed in restoring to ∞-category theory
the sleekness enjoyed by many 1-category-theoretic arguments, and a great deal of
∞-category theory has been fleshed out in works such as [Lur09], [Lur17], [Lur18],
[RV22], [GH15], and others.

Background on representation stability and functor calculus. My disserta-
tion research introduces a new flavor of functor calculus extending representation
stability to stable ∞-category theory1.

Let FI be the category of finite sets and injections and QVect the category of
rational vector spaces. A functor FI → QVect, called an FI-module, determines a
sequence of representations of the symmetric groups Sn. Representation stability
is a phenomenon enjoyed by many FI-modules of interest – especially including
the cohomology of many moduli spaces and configuration spaces – which ensures
that the representations determined by the FI-module eventually follow a certain
pattern. The theory has its origins in [CF13], was articulated in the language of
FI-modules in [CEF15], and in [Chu+14] the authors show that over Noetherian
rings, an FI-module is representation stable and objectwise finite-dimensional if and
only if it is finitely generated.

On the other hand, functor calculus refers to a family of techniques within
homotopy theory concerned with approximating functors between certain (∞-
)categories by other, more well-behaved “polynomial” or “excisive” functors. These
approximations form a tower (or some generalization thereof) analogous to the
Postnikov tower in the homotopy theory of spaces, and the fibers of each stage of
the tower, analogous to the role of Eilenberg-MacLane spaces, are described by
“coefficient objects” – often spectra equipped with an action of some group.

The most prominent member of this family of calculi is Goodwillie calculus,
originally developed by Tom Goodwillie in [Goo90], [Goo91], and [Goo03]. Today,
Goodwillie calculus has developed into a rich subfield of homotopy theory with an
array of results and applications too numerous to list here.

Other flavors of functor calculus include orthogonal calculus, introduced by
Michael Weiss in [Wei95] and dealing with functors from the category of Euclidean
spaces to topological spaces; embedding calculus, developed by Tom Goodwillie and
Michael Weiss and introduced in [Wei96] and dealing with space-valued presheaves

1Beware that the term “stable” regrettably has two distinct meanings here.
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on categories of manifolds and embeddings; and several others. It is to orthogonal
calculus that my work is most reminiscent.

FI-calculus. Fix V a stable, presentable ∞-category. A stable ∞-category is the
∞-categorical analog of an abelian category, and presentability is a (co)completeness
condition together with a set-theoretic tameness condition. I define a standard
n-cube to be a diagram in FI, determined by a pair of sets S ⊆ S′ such that
|S′ \ S| = n and consisting of all intermediate sets S ⊆ T ⊆ S′ along with the
inclusion morphisms. I call a functor FI → V an “FI-object” and denote the ∞-
category of FI-objects FIV. I define an n-polynomial FI-object to be one sending all
standard n + 1-cubes to limit diagrams (also called “Cartesian cubes”) and denote
the ∞-category of n-polynomial FI-objects PolynV. I say that an FI-object E is
polynomial if there exists some n ∈ N such that E ∈ PolynV. I show, in analogy
with a theorem from representation stability, that an FI-object is n-polynomial if
and only if it is left Kan extended from FI≤n, the full subcategory of FI spanned by
sets of cardinality at most n.

As in other flavors of functor calculus, there is a “Taylor tower” of universal
n-polynomial approximations PnE under a given FI-object E. I call an FI-object E
n-homogeneous if E is n-polynomial and Pn−1E ∼= 0 and prove an equivalence

HmgnV ≃ SnV
between the ∞-categories of n-homogeneous FI-objects and of Sn-objects in V – a
result with direct analogs in orthogonal calculus and in Goodwillie calculus. The
layers of the Taylor tower of a given E ∈ FIV, the FI-objects

DnE
def= fib PnE → Pn−1E

are n-homogeneous and hence determine Sn-objects, which I call the Taylor
coefficients CnE of E.

Surprisingly, there exist maps between the Taylor coefficients of an FI-object
making those coefficients – a priori only a symmetric sequence – into an FI-object
themselves. The first main question of my dissertation is to establish how much
information can be recovered from these Taylor coefficients along with their FI-object
structure. To address this question in full generality, I introduce the ∞-category

FTTV def= lim · · · Pn−→ PolynV Pn−1−→ · · · P0−→ Poly0V
of “formal Taylor towers.” FTTV is the natural domain of the aggregate Taylor
coefficient functor C, and under good conditions (e.g. when V is Q-linear) I prove
that C determines an equivalence of ∞-categories

C : FTTV ≃ FIV
My second main result deals with the specialization to the case V = SpQ of

functors from FI to the ∞-category of rational chain complexes and establishes FI-
calculus as a direct generalization of representation stability to the setting of stable
∞-categories. I show that if an FI-chain complex E is n-polynomial for some n ∈ N,
then its homology is representation stable; that if an FI-module E : FI → QVect is
representation stable, then there exists n ∈ N such that, when E is considered as a
discrete FI-chain complex, E agrees with PnE outside of a finite range; and finally
that the Sn-representations appearing in the stable range of the homology of an
n-polynomial FI-chain complex E can be directly read off from the homology of the
coefficient FI-chain complex CE.
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Work in progress and future directions. One of the several major benefits of
the ∞-categorical perspective on representation stability is the wide range of new
avenues it opens up for further research. More specifically, the techniques used in
FI-calculus give rise to several families of generalized functor calculus. In each of
these, there is a classification of homogeneous functors by certain Taylor coefficients.
In general, it is an interesting question to investigate what morphisms exist between
these coefficients or what other structure may tie them together and under what
conditions these structures allow for the recovery of a Taylor tower.

One generalization begins with the observation that FI is the category of 0-
dimensional manifolds and embeddings. The fundamental framework of FI-calculus
can be extended to Embdd, the ∞-category of d-dimensional manifolds and embed-
dings. In this case the standard cubes are (the opposites of) the cubes relevant to
the Goodwillie-Weiss embedding calculus of [Wei96], and the same techniques which
apply for FI-calclus allow for a classification of n-homogeneous functors Embdd → V
by coefficient functors with domain the full sub-infty-category of Embdd spanned
by the disjoint union of n open d-disks.

It is important to note that this does not reproduce the Goodwillie-Weiss
embedding calculus: embedding calculus is concerned with functors with domain
Embdop

d and yields a markedly different theory in which polynomial functors are
obtained as right Kan extensions from full sub-∞-categories of disks. The extension
of FI-calculus to higher dimensional manifolds instead has more interaction with
factorization homology as developed by Ayala, Francis, and others, but would
represent a novel approach to studying functors from the category Embdn.

Generalizing along a complementary direction, FI-calculus is the terminal example
in a family of functor calculi. Given any Cartesian fibration

ϖ : D → FI

one may “lift” FI-calculus along ϖ to obtain a functor calculus for functors D → V .
In this case, Taylor coefficients are functors

CnE : ϖ−1 (Sn) → V

Examples include ∞-categories of totally ordered finite sets, cyclically ordered finite
sets, and directed or undirected graphs, as well as more involved examples: e.g.
given a manifold M , the ∞-category MBraid with objects finite sets of distinct
marked points in M and morphisms given by braids from one set of points to another.
When M = R2, this recovers the category of braids, a category also arising in the
homological stability framework of Oscar Randal-Williams and Nathalie Wahl in
[RW17].

When ϖ is a right fibration, the Taylor coefficients of a functor or a formal Taylor
tower, as when D = FI, assemble into a functor D → V. Subject to appropriate
finiteness conditions, it is sensible to ask if the vanishing of certain Tate constructions,
as in the case of FI, permit the reconstruction of a Taylor tower from its aggregate
Taylor coefficient functor. This is work which presently engages me. It is also
of interest in this setting to investigate whether these functor calculi categorify
representation stability phenomena.

If ϖ has a braided monoidal structure compatible with its Cartesian structure, we
obtain a refined notion of polynomial functor (and hence also homogeneous functor)
D → V indexed by a poset whose elements are built from sets of objects in D.
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The preceding generalizations can be also combined: a Cartesian fibration
ϖ : D → Embdd

yields a functor calculus for functors D → V including a classification theorem for
homogeneous functors.

The ∞-categorical perspective on representation stability also invites investigation
of the interactions between representation stability and Goodwillie calculus. In
[BE16], David Barnes and Rosona Eldred investigate the interaction between
orthogonal calculus and Goodwillie calculus by composing functors of interest
in Goodwillie calculus with the functor

V 7→ SV : J → S
sending a vector space to its one-point compactification, where J is the ∞-category
of Euclidean spaces and S is the ∞-category of topological spaces. I am interested
in similar questions: given stable presentable ∞-categories V and W and functors

E : FI → V
and

F : V → W
how do the Taylor coefficients of E and F (in the FI and Goodwillie sense respectively)
relate to the coefficients of F ◦ E? Is there some sort of chain rule analogous to
that described by Greg Arone and Michael Ching in [AC11] that describes this
relationship? Going in the other direction, given a functor

G : FI → W
we can ask what the Taylor coefficients of E and G tell us about the Goodwillie
tower of LanE G. These same questions relating can be applied to the zoo of
generalizations of FI-calculus.
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