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Introduction V is an arbitrary, fixed stable presentable oo-category.

L ¢ Flis the category with objects finite sets and morphisms injections. Fl<, is the
full subcategory of Fl spanned by set of cardinality at most n. &, is the nth
symmetric group.

Polynomial
Fl-objects

Homogeneous

Fl-objects ® FIV is the oco-category of functors FI — V. Its objects are called Fl-objects.
Taylor Fl<,V and &,V are defined similarly.

coefficients

Representation ® For X €V and S a set, S ® X denotes the S-fold coproduct X and S M X the
- S-fold product of X.
Generalizations

References
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® We recall the definition of and a salient fact about representation stability for
Fl-modules.
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Fl-modules.

Introduction

Representation

sty ® We describe a functor calculus for Fl-objects. We define a Taylor tower and
Polynomial

Flobjects show that n-homogeneous Fl-objects are classified by &,-objects, allowing us to
Homogeneous define the Taylor coefficients of an Fl-object.
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® We recall the definition of and a salient fact about representation stability for
Fl-modules.

Introduction

Representation

sty ® We describe a functor calculus for Fl-objects. We define a Taylor tower and
Polynomial

FlLobjects show that n-homogeneous Fl-objects are classified by &,-objects, allowing us to

Homogeneous define the Taylor coefficients of an Fl-object.
Fl-objects

L * We show that Fl-calculus categorifies representation stability.
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We recall the definition of and a salient fact about representation stability for
Fl-modules.

Introduction

Representation
stability

® We describe a functor calculus for Fl-objects. We define a Taylor tower and
S show that n-homogeneous Fl-objects are classified by &,-objects, allowing us to
Homogeneous define the Taylor coefficients of an Fl-object.
:;:em © We show that Fl-calculus categorifies representation stability.
S © We describe natural transformations between Taylor coefficients and show that

Representation

stability Taylor towers are recovered from these natural transformations up to the
isited . . .
- vanishing of a Tate construction.

Generalizations
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Recall that in characteristic 0, isomorphism classes of G -irreducibles are in bijection
with partitions of n, where a partition of n is a non-increasing sequence of positive
. )\k) with Zi)‘f = n.

integers A = (Aq, ..
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Recall that in characteristic 0, isomorphism classes of G -irreducibles are in bijection
with partitions of n, where a partition of n is a non-increasing sequence of positive
integers A = (A1,..., A\g) with >; A\ = n.

Given a partition A = (A1,...,Ax) of n, and m > n, we define a partition A" of m

by)\mdéf()\l—i—m—n,...,/\k).
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Recall that in characteristic 0, isomorphism classes of G -irreducibles are in bijection

with partitions of n, where a partition of n is a non-increasing sequence of positive

integers A = (A1,..., A\g) with >; A\ = n.

Given a partition A = (A1,...,Ax) of n, and m > n, we define a partition A" of m

by)\mdéf()\l—i—m—n,...,/\k).

By Maschke's Theorem, a finite-dimensional & ,-representation is determined by an
N-linear combination of partitions of n, so we can extend this operation: given an
G ,-representation V/, we obtain an &,,-representation V™. In general, V1™ is a

subrepresentation of Indg:’ V.
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T i For R a ring, we call a functor E: FI — Modg an Fl-module.
stability

Polynomial

Fl-objects The endomorphism monoids of Fl are the symmetric groups, so any Fl-module

Ef;nb?ie:seous restricts an & ,-representation for each n. A happy fact is that for many Fl-modules
L E of natural interest, the representations E(n) are related in a way made precise on
coefficients the following slide.

Representation
stability
revisited
Generalizations
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e Definition (Church, Farb [CF13, Definition 2.3])

Representation
stability

A Fl-module E over a field of characteristic 0 is representation stable if there exists
Fl-objects N € N such that for all m>n> N:

Polynomial

Foobeste ¢ The map Ind) E(n) — E(m) is surjective.
Tl ° n 2 o o 5
coeffcients The map E(n) - Resm E(m) Is Injective.
Representation ® E(m) = E(n)Tm
stability

revisited

Generalizations
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* HK(C,(M),Q) for M a compact manifold of dimension d > 2 and C,(M) the
space of configurations of n marked points in M (Church [Chull]).

Representation
stability

Polynomial
Fl-objects

Hk(Mg,Q) where M3 is the moduli space of genus g Riemann surfaces with n
Homogeneous marked points (Jiménez Rolland [Jim11]).

Fl-objects

Taylor All sorts of others; see e.g. the excellent survey of Jiménez Rolland and Wilson,
coefficients [JW22]
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Introduction Theorem (Church et al. [Chu+14, Theorem C])

Representation
stability

Let E be an Fl-module over a field of characteristic 0. The following are equivalent:

Polynomial 5 o g . . H
Flobjects © E(n) is finite dimensional for all n € N and E is representation stable.

Homogeneous

Flobjects © There exists some N such that E(n) is finite dimensional for n < N and

Taylor

coefficients ~ Fl FI <N
: E = Llang_, Resg =" E
Representation -

stability
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A functor C : P(n) — Fl is a standard n-cube if there exists S € Fl such that
C(T)y=SuT
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Introduction Deﬁnition

© = Afunctor C:P(n) — Flis a standard n-cube if there exists S € Fl such that

stability
Polynomial C( T) = 5 U T

Fl-objects

Homogeneous
Fl-objects

Definition

Taylor
coefficients

. Afunctor E: FI =V is n-polynomial if it sends every standard n + 1-cube to a limit
stability diagram. We denote the co-category of such Poly,V.
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The following theorem is a strong hint that there is a relationship between
Fl-calculus and representation stability.

University of California, Riverside



Fl-calculus

Kaya Arro

Introduction

Representation
stability

Polynomial
Fl-objects

Homogeneous
Fl-objects

Taylor
coefficients

Representation
stability
revisited

Generalizations

References

Fl-calculus

The following theorem is a strong hint that there is a relationship between
Fl-calculus and representation stability.

Theorem

An Fl-object E is n-polynomial if and only if

FI
E = LanE:Sn Resg~" E

University of California, Riverside
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The following theorem is a strong hint that there is a relationship between
Fl-calculus and representation stability.

Kaya Arro

Introduction

Theore

Representation
stability . . ; . .
, An Fl-object E is n-polynomial if and only if
Polynomial
Fl-objects
FI Fl<n
Homogeneous E = Lan ReS - E
Fl-objects FIS" FI

Taylor
coefficients

Representation
stability
revisited

Corollary

Poly,V is both reflective and coreflective in FIV.

Generalizations

References

We denote the reflection functor P, and the coreflection functor Q,,.
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Introduction We denote
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Definition

Introduction

We denote o o
Representation I n n—
<tability FTTY ¥ jim ... B2t Poly,.1V —2 Poly,V 3 -
Pol; ial
Flobjects We call the objects of F'TTV formal Taylor towers.

Homogeneous
Fl-objects

. Definition
aylor
coefficients

- We have a functor .
iy PY(E— {P,E}): FIV - FTTV

revisited

ciceias We call PE the Taylor tower of E.

References
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Theorem

Introduction

... Suppose E: FI — QVect is representation stable. Then there is some n € N such
stability : that

Frobjerts. fib (HE — P,HE)

Homogeneous

Fl-objects has finite support — i.e. HE is polynomial to within finite error. H means
Taylor “Eilenberg-MacLane spectrum.”

coefficients

Representation

stability Suppose E: FI — ChQ is polynomial. Then H;E is representation stable for all
e i € Z. H; means “homology.”

Generalizations
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We call an Fl-object analytic if it is a limit of polynomial Fl-objects. We denote the
oo-category of such FIVARY,
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, Definition
Introduction

~ .. Wecall an Fl-object analytic if it is a limit of polynomial Fl-objects. We denote the
- oo-category of such FIVARY,

Polynomial
Fl-objects

Homogeneous
Fl-objects

Definition
Taylo'r.
FRREE We call a formal Taylor tower convergent if it is a colimit of eventually constant

Representation

o formal Taylor towers, or, equivalently, if it is a Taylor tower. We denote the
revisited OO_category Of SUCh FTTVCOHV.

Generalizations
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Theorem

P: FIVARY ~ FTTVCY . |im
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Introduction

Theorem

Representation
stability

Polynomial

Flohjects P: FIVARY ~ FTTVCY . |im

Homogeneous
Fl-objects
TaonJr This fact is a formal consequence of the facts that FIV is stable, that Poly,V are

coefficients each both reflective and coreflective, and that FIV is generated under colimits by

Representation . .
stability polynomial objects.

revisited
Generalizations
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Introduction

Definition
D An Fl-object E is n-homogeneous if E € Poly,V and P,_1E = 0. We denote the
olynomial

Fl-objects oo-category of such Hmg, V.
o We define

Fl-objects def

D, =

Representation
stability

fib(P, — P,_1)

Taylor
coefficients

and call D,E the nth homogeneous layer of E.
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Introduction An Fl-object E is n-cohomogeneous if E € Poly,V and Q,—1E = 0. We denote the

(o oo-category of such coHmg, V.

stability .
: We define
Polynomial def

Fl-objects Rn = Coﬁb (Qn—l — Qn)
Homogeneous
Fl-objects and call R,E the nth cohomogeneous layer of E.

Taylor
coefficients

Kaya Arro
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Definition
Introduction An Fl-object E is n-cohomogeneous if E € Poly,V and Q,_1E = 0. We denote the

i oo-category of such coHmg, V.
stability

Kaya Arro

_ We define
Polynomial def .
Fl-objects Rn = COfIb (Qn—l = Qn)
Homogeneous
Fl-objects and call R,E the nth cohomogeneous layer of E.

Taylor
coefficients

Theorem

Representation
stability
revisited

Generalizations ngnv ~Y COngnv ~ GnV
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Given E € Hmg,V, each row and each column of the following diagram is a fiber

sequence.

0 s E D,R,E
Q,—1E s E s R,E

I I

Qn_lE —— 00— Pn_anE

This establishes that £ = D,R,,, and a dual argument gives the opposite
direction. ]
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Definition

For E € FIV we denote by CE(n) the & ,-object corresponding to D,E (this is
R,D,E(n)) and we call CE(n) the nth Taylor coefficient of E. We define Taylor

coefficients of formal Taylor towers in the same fashion.
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: Definition
Introduction

.. For E € FIV we denote by CE(n) the &p-object corresponding to D,E (this is
:alb'hty_ : R.D,E(n)) and we call CE(n) the nth Taylor coefficient of E. We define Taylor
Frobjects coefficients of formal Taylor towers in the same fashion.

Homogeneous
Fl-objects

Talor The Taylor coefficients CE(n) can be calculated directly from E in terms of certain
| cross-effects. In forthcoming work, Bridget Schreiner shows that these cross effects
L are themselves useful tools for calculating the homology of Fl-spaces, especially

those with representation stable homology.
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For X € V, define

Fox < ks Fi(n, k) ® X: FI ¥
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Representation For X E Vv deﬁne

i def
sta||ty- me ; kp—)Fl(ﬂ,k)@XFl—)V
Polynomial
Fl-objects

Homogeneous
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Taylor Theorem

coefficients
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revited CFx.n(k) = FI(k, n) i X
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For E € FIV or E € FTTV, CE is an Fl-object!
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Corollary
Introduction

. For E€FIVor EecFTTVY, CE is an Fl-object!

stability

Polynomial
Fl-objects

Homogeneous Theorem

Fl-objects

- Suppose that the Tate construction vanishes for & ,-objects in V, as when V = Sp<.
coefficients Then

Representation C: FTTV ~ FIV

stability
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Representation DnFS,n(k) = zOO—nS* BP(n, k)
stability

Polynomial where S, is unreduced suspension that makes one cone point a base point, B is the
L classifying space of a poset, and P(n, k) is the poset of non-empty partial bijections
S between (n) and (k).
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Theorem
ForV = Sp,

D, Fsn(k) = X°7"S,BP(n, k)

where S, is unreduced suspension that makes one cone point a base point, B is the
classifying space of a poset, and P(n, k) is the poset of non-empty partial bijections
between (n) and (k).

Theorem
For k > 2n—1, D,Fs (k) is a wedge of copies of S.

University of California, Riverside
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Theorem
ForV = Sp,

D, Fsn(k) = X°7"S,BP(n, k)

where S, is unreduced suspension that makes one cone point a base point, B is the
classifying space of a poset, and P(n, k) is the poset of non-empty partial bijections
between (n) and (k).

Theorem
For k > 2n—1, D,Fs (k) is a wedge of copies of S.

As an eventual result of this, the representations appearing in the stable range of a
representation stable FI-module can be directly read off from its Taylor coefficients.

University of California, Riverside
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We can generalize some of the results of Fl-calculus to more general settings.
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We can generalize some of the results of Fl-calculus to more general settings.

Let C be an oco-category and {®;} a sequence of families of diagrams (e.g. cubes) in

C satisfying a number of properties
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Introduction We can generalize some of the results of Fl-calculus to more general settings.

Representation
tabilit . . .
- Let C be an oco-category and {®;} a sequence of families of diagrams (e.g. cubes) in
Polynomial

Fl-objects C satisfying a number of properties
Homogeneous

Fl-objects

We obtain a Taylor tower as well as a classification of n-homogeneous functors in
Taylor

coefficients terms of Taylor coefficients
Representation Cn \Cn_]_ — V
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® For Z the domain of a diagram in some ®;, Z has initial and terminal objects
and Z-diagrams in stable co-categories are limit diagrams if and only if they are
colimit diagrams.
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Introduction ® For Z the domain of a diagram in some ®;, Z has initial and terminal objects
Representation and Z-diagrams in stable co-categories are limit diagrams if and only if they are
- colimit diagrams.

Polynomial

Fl-objects ® If a functor F: C — V sends all diagrams in ©,, to limit diagrams, then it

F',‘f;“b‘jfft”:ws necessarily sends all diagrams in ©,,1 to limit diagrams.

def : .
L * Denote by C? = C; and C"™! the full sub-oo-category of objects that are either
Representation in C[" or are the terminal objects in some diagram in ®; that otherwise takes
e values in C". We require that C = J,C".
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Suppose C satisfies the required axioms, and let
Representation
stability

w:D—C

Polynomial
Fl-objects

Homogeneous be a Cartesian fibration. Then D inherits a functor calculus from C.

Fl-objects

Taylor . . . . .

coeficients When C = Fl and w is a right fibration, the Taylor coefficients of a D-object carry
o the structure of a D-object themselves, just as in the case of FI.
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Fix a manifold M and let Braidy, def J M —i.e. the category in which objects are
configurations of marked points in M and morphisms are braids.

Braidy, admits a functor calculus analogous to Fl-calculus in which the Taylor
coefficients carry the structure of a Braid-object.
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“Fl-modules over Noetherian rings”.

“Representation stability for the cohomology of
the moduli space Mgn".


https://doi.org/10.1007/s00222-011-0353-4
https://doi.org/10.1016/j.aim.2013.06.016
https://doi.org/10.1016/j.aim.2013.06.016
https://doi.org/10.2140/gt.2014.18.2951
https://doi.org/10.2140/gt.2014.18.2951
https://doi.org/10.2140/agt.2011.11.3011

“Stability properties of
moduli spaces”.


https://doi.org/10.1090/noti2452

The End



	Introduction
	Representation stability
	Polynomial FI-objects
	Homogeneous FI-objects
	Taylor coefficients
	Representation stability revisited
	Generalizations
	References

