FI-calculus

Kaya Arro

Introduction

Representatic stability

Polynomial FI-objects

Homogeneou Fl-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

Representation stability and functor calculus

Kaya Arro

University of California, Riverside

Conventions and notation

FI-calculus

Kaya Arro

- Introduction
- Representations stability
- Polynomial FI-objects
- Homogeneous Fl-objects
- Taylor coefficients
- Representation stability revisited
- Generalizations
- References

- \mathcal{V} is an arbitrary, fixed stable presentable ∞ -category.
- FI is the category with objects finite sets and morphisms injections. FI_{≤n} is the full subcategory of FI spanned by set of cardinality at most n. S_n is the nth symmetric group.
- FI \mathcal{V} is the ∞ -category of functors FI $\rightarrow \mathcal{V}$. Its objects are called FI-objects. FI $\leq_n \mathcal{V}$ and $\mathfrak{S}_n \mathcal{V}$ are defined similarly.
- For $X \in \mathcal{V}$ and S a set, $S \otimes X$ denotes the S-fold coproduct X and $S \pitchfork X$ the S-fold product of X.

FI-calculus

Kaya Arro

Introduction

Representation stability

Polynomial FI-objects

Homogeneous Fl-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

• We recall the definition of and a salient fact about representation stability for FI-modules.

FI-calculus

Kaya Arro

- Introduction
- Representatior stability
- Polynomial FI-objects
- Homogeneou Fl-objects
- Taylor coefficients
- Representation stability revisited
- Generalizations
- References

- We recall the definition of and a salient fact about representation stability for FI-modules.
 - We describe a functor calculus for FI-objects. We define a Taylor tower and show that *n*-homogeneous FI-objects are classified by 𝔅_n-objects, allowing us to define the Taylor coefficients of an FI-object.

FI-calculus

Kaya Arro

- Introduction
- Representatior stability
- Polynomial Fl-objects
- Homogeneou Fl-objects
- Taylor coefficients
- Representation stability revisited
- Generalizations
- References

- We recall the definition of and a salient fact about representation stability for FI-modules.
- We describe a functor calculus for FI-objects. We define a Taylor tower and show that *n*-homogeneous FI-objects are classified by 𝔅_n-objects, allowing us to define the Taylor coefficients of an FI-object.
- We show that FI-calculus categorifies representation stability.

FI-calculus

Kaya Arro

Introduction

Representation stability

Polynomial Fl-objects

Homogeneou Fl-objects

Taylor coefficients

Representatio stability revisited

Generalizations

References

- We recall the definition of and a salient fact about representation stability for FI-modules.
- We describe a functor calculus for FI-objects. We define a Taylor tower and show that *n*-homogeneous FI-objects are classified by \mathfrak{S}_n -objects, allowing us to define the Taylor coefficients of an FI-object.
- We show that FI-calculus categorifies representation stability.
- We describe natural transformations between Taylor coefficients and show that Taylor towers are recovered from these natural transformations up to the vanishing of a Tate construction.

Representations of symmetric groups

FI-calculus

Kaya Arro

Introduction

Representatio stability

Polynomial FI-objects

Homogeneou FI-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

Recall that in characteristic 0, isomorphism classes of \mathfrak{S}_n -irreducibles are in bijection with partitions of n, where a partition of n is a non-increasing sequence of positive integers $\lambda = (\lambda_1, \ldots, \lambda_k)$ with $\sum_i \lambda_i = n$.

Representations of symmetric groups

FI-calculus

Kaya Arro

Introduction

Representatio stability

Polynomial FI-objects

Homogeneou FI-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

Recall that in characteristic 0, isomorphism classes of \mathfrak{S}_n -irreducibles are in bijection with partitions of n, where a partition of n is a non-increasing sequence of positive integers $\lambda = (\lambda_1, \ldots, \lambda_k)$ with $\sum_i \lambda_i = n$.

Given a partition $\lambda = (\lambda_1, \dots, \lambda_k)$ of n, and $m \ge n$, we define a partition λ^m of m by $\lambda^m \stackrel{\text{def}}{=} (\lambda_1 + m - n, \dots, \lambda_k)$.

Representations of symmetric groups

FI-calculus

Kaya Arro

Introduction

Representatio stability

Polynomial FI-objects

Homogeneou Fl-objects

Taylor coefficients

Representation stability revisited

Generalization

Recall that in characteristic 0, isomorphism classes of \mathfrak{S}_n -irreducibles are in bijection with partitions of n, where a partition of n is a non-increasing sequence of positive integers $\lambda = (\lambda_1, \ldots, \lambda_k)$ with $\sum_i \lambda_i = n$.

Given a partition $\lambda = (\lambda_1, \dots, \lambda_k)$ of n, and $m \ge n$, we define a partition λ^m of m by $\lambda^m \stackrel{\text{def}}{=} (\lambda_1 + m - n, \dots, \lambda_k)$.

By Maschke's Theorem, a finite-dimensional \mathfrak{S}_n -representation is determined by an \mathbb{N} -linear combination of partitions of n, so we can extend this operation: given an \mathfrak{S}_n -representation V, we obtain an \mathfrak{S}_m -representation $V^{\uparrow m}$. In general, $V^{\uparrow m}$ is a subrepresentation of $\operatorname{Ind}_{\mathfrak{S}_n}^{\mathfrak{S}_m} V$.

FI-modules

FI-calculus

Kaya Arro

Introduction

Representatic stability

Polynomial Fl-objects

Homogeneou Fl-objects

Taylor coefficients

Representatio stability revisited

Generalization

References

For R a ring, we call a functor $E \colon FI \to \mathcal{M}od_R$ an FI-module.

The endomorphism monoids of FI are the symmetric groups, so any FI-module restricts an \mathfrak{S}_n -representation for each n. A happy fact is that for many FI-modules E of natural interest, the representations E(n) are related in a way made precise on the following slide.

Representation stability

FI-calculus

Kaya Arro

Introduction

Representation stability

Polynomial Fl-objects

Homogeneou FI-objects

Taylor coefficients

Representatio stability revisited

Generalization

References

Definition (Church, Farb [CF13, Definition 2.3])

A FI-module *E* over a field of characteristic 0 is representation stable if there exists $N \in \mathbb{N}$ such that for all $m \ge n \ge N$:

- The map $\operatorname{Ind}_n^m E(n) \to E(m)$ is surjective.
- The map $E(n) \rightarrow \operatorname{Res}_m^n E(m)$ is injective.
- $E(m) \cong E(n)^{\uparrow m}$.

Examples

FI-calculus

Kaya Arro

- Introduction
- Representation stability
- Polynomial Fl-objects
- Homogeneoι FI-objects
- Taylor coefficients
- Representatio stability revisited
- Generalizations
- References

- $H^k(C_n(M), \mathbb{Q})$ for M a compact manifold of dimension $d \ge 2$ and $C_n(M)$ the space of configurations of n marked points in M (Church [Chu11]).
 - H^k(Mⁿ_g, Q) where Mⁿ_g is the moduli space of genus g Riemann surfaces with n marked points (Jiménez Rolland [Jim11]).
 - All sorts of others; see e.g. the excellent survey of Jiménez Rolland and Wilson, [JW22].

Finite presentation

FI-calculus

Kaya Arro

Introduction

Representation stability

Polynomial Fl-objects

Homogeneou FI-objects

Taylor coefficients

Representatio stability revisited

Generalizations

References

Theorem (Church et al. [Chu+14, Theorem C])

Let E be an FI-module over a field of characteristic 0. The following are equivalent:

- E(n) is finite dimensional for all $n \in \mathbb{N}$ and E is representation stable.
- There exists some N such that E(n) is finite dimensional for $n \leq N$ and

$$E \cong \operatorname{Lan}_{\operatorname{Fl}_{\leq N}}^{\operatorname{Fl}} \operatorname{Res}_{\operatorname{Fl}}^{\operatorname{Fl}_{\leq N}} E$$

Polynomial FI-objects

FI-calculus

Kaya Arro

Introduction

Representatic stability

Polynomial FI-objects

Homogeneou FI-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

Definition

A functor $C : \mathcal{P}(n) \to \mathsf{FI}$ is a standard *n*-cube if there exists $S \in \mathsf{FI}$ such that $C(T) = S \sqcup T$

Polynomial FI-objects

FI-calculus

Kaya Arro

Introduction

Representatio stability

Polynomial Fl-objects

Homogeneou Fl-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

Definition

A functor $C : \mathcal{P}(n) \to \mathsf{FI}$ is a standard *n*-cube if there exists $S \in \mathsf{FI}$ such that $C(T) = S \sqcup T$

Definition

A functor $E \colon \mathsf{FI} \to \mathcal{V}$ is *n*-polynomial if it sends every standard n + 1-cube to a limit diagram. We denote the ∞ -category of such $\operatorname{Poly}_n \mathcal{V}$.

Presentation in finite degree

FI-calculus

Kaya Arro

Introduction

Representatio stability

Polynomial FI-objects

Homogeneou FI-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

The following theorem is a strong hint that there is a relationship between FI-calculus and representation stability.

Presentation in finite degree

FI-calculus

Kaya Arro

Introduction

Representation stability

Polynomial Fl-objects

Homogeneou FI-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

The following theorem is a strong hint that there is a relationship between FI-calculus and representation stability.

Theorem

An FI-object E is n-polynomial if and only if

$$E \cong \operatorname{Lan}_{\operatorname{Fl}_{\leq n}}^{\operatorname{Fl}}\operatorname{Res}_{\operatorname{Fl}}^{\operatorname{Fl}_{\leq n}}E$$

Presentation in finite degree

FI-calculus

Kaya Arro

Introduction

Representation stability

Polynomial Fl-objects

Homogeneou FI-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

The following theorem is a strong hint that there is a relationship between FI-calculus and representation stability.

Theorem

An FI-object E is n-polynomial if and only if

$$E \cong \operatorname{Lan}_{\operatorname{Fl}_{\leq n}}^{\operatorname{Fl}}\operatorname{Res}_{\operatorname{Fl}}^{\operatorname{Fl}_{\leq n}}E$$

Corollary

 $\operatorname{Poly}_n \mathcal{V}$ is both reflective and coreflective in FI \mathcal{V} .

We denote the reflection functor P_n and the coreflection functor Q_n .

Formal Taylor towers

FI-calculus

Kaya Arro

Introduction

Representation stability

Polynomial Fl-objects

Homogeneou Fl-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

Definition

We denote

$$\mathrm{FTT}\mathcal{V} \stackrel{\mathrm{def}}{=} \lim \cdots \stackrel{\mathbf{P}_{n+1}}{\longrightarrow} \mathrm{Poly}_{n+1}\mathcal{V} \stackrel{\mathbf{P}_n}{\longrightarrow} \mathrm{Poly}_n\mathcal{V} \stackrel{\mathbf{P}_{n-1}}{\longrightarrow} \cdots$$

We call the objects of $\mathrm{FTT}\mathcal V$ formal Taylor towers.

Formal Taylor towers

FI-calculus

Kaya Arro

Introduction

Representation stability

Polynomial Fl-objects

Homogeneous Fl-objects

Taylor coefficients

Representation stability revisited

Generalization

References

Definition

We denote

$$\mathrm{FTT}\mathcal{V} \stackrel{\mathrm{def}}{=} \lim \cdots \stackrel{\mathbf{P}_{n+1}}{\longrightarrow} \mathrm{Poly}_{n+1}\mathcal{V} \stackrel{\mathbf{P}_n}{\longrightarrow} \mathrm{Poly}_n\mathcal{V} \stackrel{\mathbf{P}_{n-1}}{\longrightarrow} \cdots$$

We call the objects of $\mathrm{FTT}\mathcal{V}$ formal Taylor towers.

Definition

We have a functor

$$\mathsf{P} \stackrel{\mathrm{def}}{=} (\mathsf{E} \mapsto \{\mathsf{P}_i \mathsf{E}\}) \colon \mathsf{FI} \mathcal{V} \to \mathrm{FTT} \mathcal{V}$$

We call $\mathbf{P}E$ the Taylor tower of E.

Representation stability

Theorem

FI-calculus

Kaya Arro

Introduction

Representatio stability

Polynomial FI-objects

Homogeneou Fl-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

Suppose $E\colon\mathsf{FI}\to\mathbb{Q}\mathbf{Vect}$ is representation stable. Then there is some $n\in\mathbb{N}$ such that

fib ($HE \rightarrow \mathbf{P}_n HE$)

has finite support – i.e. HE is polynomial to within finite error. H means "Eilenberg-MacLane spectrum."

Suppose $E \colon FI \to Ch\mathbb{Q}$ is polynomial. Then H_iE is representation stable for all $i \in \mathbb{Z}$. H_i means "homology."

Analytic and convergent

FI-calculus

Kaya Arro

Introduction

Representation stability

Polynomial Fl-objects

Homogeneou FI-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

Definition

We call an FI-object analytic if it is a limit of polynomial FI-objects. We denote the ∞ -category of such FI $\mathcal{V}^{\mathrm{Anly}}$.

Analytic and convergent

FI-calculus

Kaya Arro

Introduction

Representation stability

Polynomial Fl-objects

Homogeneou Fl-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

Definition

We call an FI-object analytic if it is a limit of polynomial FI-objects. We denote the ∞ -category of such FI \mathcal{V}^{Anly} .

Definition

We call a formal Taylor tower convergent if it is a colimit of eventually constant formal Taylor towers, or, equivalently, if it is a Taylor tower. We denote the ∞ -category of such $FTT\mathcal{V}^{Conv}$.

An equivalence

FI-calculus

Kaya Arro

Introduction

Representatio stability

Polynomial Fl-objects

Homogeneou FI-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

Theorem

 $\textbf{P} \colon \mathsf{FI}\mathcal{V}^{\mathrm{Anly}} \simeq \mathrm{FTT}\mathcal{V}^{\mathrm{Conv}} \colon \mathsf{lim}$

An equivalence

FI-calculus

Kaya Arro

Introduction

Representatio stability

Polynomial FI-objects

Homogeneou FI-objects

Taylor coefficients

Representatior stability revisited

Generalization

References

Theorem

 $\textbf{P} \colon \mathsf{FI}\mathcal{V}^{\mathrm{Anly}} \simeq \mathrm{FTT}\mathcal{V}^{\mathrm{Conv}} \colon \mathsf{lim}$

This fact is a formal consequence of the facts that FIV is stable, that $Poly_n V$ are each both reflective and coreflective, and that FIV is generated under colimits by polynomial objects.

Homogeneous FI-objects

FI-calculus

Kaya Arro

Introduction

Representatio stability

Polynomial FI-objects

Homogeneo FI-objects

Taylor coefficients

Representation stability revisited

Generalization

References

Definition

An FI-object *E* is *n*-homogeneous if $E \in \text{Poly}_n \mathcal{V}$ and $\mathbf{P}_{n-1}E \cong 0$. We denote the ∞ -category of such $\text{Hmg}_n \mathcal{V}$.

We define

$$\mathbf{D}_n \stackrel{\mathrm{def}}{=} \operatorname{fib}\left(\mathbf{P}_n o \mathbf{P}_{n-1}\right)$$

and call $\mathbf{D}_n E$ the *n*th homogeneous layer of E.

Cohomogeneous FI-objects

FI-calculu:

Kaya Arro

Introduction

Representatic stability

Polynomial FI-objects

Homogeneoι FI-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

Definition

An FI-object *E* is *n*-cohomogeneous if $E \in \text{Poly}_n \mathcal{V}$ and $\mathbf{Q}_{n-1}E \cong 0$. We denote the ∞ -category of such $\operatorname{coHmg}_n \mathcal{V}$.

We define

$$\mathbf{R}_n \stackrel{\mathrm{def}}{=} \operatorname{cofib} \left(\mathbf{Q}_{n-1}
ightarrow \mathbf{Q}_n
ight)$$

and call $\mathbf{R}_n E$ the *n*th cohomogeneous layer of E.

Cohomogeneous FI-objects

FI-calculu:

Kaya Arro

Introduction

Representatio stability

Polynomial FI-objects

Homogeneo FI-objects

Taylor coefficients

Representatio stability revisited

Generalization:

Definition

An FI-object *E* is *n*-cohomogeneous if $E \in \text{Poly}_n \mathcal{V}$ and $\mathbf{Q}_{n-1}E \cong 0$. We denote the ∞ -category of such $\text{coHmg}_n \mathcal{V}$. We define

 $\mathbf{R}_n \stackrel{\text{def}}{=} \operatorname{cofib} (\mathbf{Q}_{n-1} \to \mathbf{Q}_n)$

and call $\mathbf{R}_n E$ the *n*th cohomogeneous layer of E.

Theorem

 $\operatorname{Hmg}_{n}\mathcal{V}\simeq\operatorname{coHmg}_{n}\mathcal{V}\simeq\mathfrak{S}_{n}\mathcal{V}$

Classification of homogeneous FI-objects

FI-calculu:

Kaya Arro

Proof.

Introduction

Representatio stability

Polynomial FI-objects

Homogeneoι FI-objects

Taylor coefficients

Representatio stability revisited

Generalization

References

Given $E \in \operatorname{Hmg}_n \mathcal{V}$, each row and each column of the following diagram is a fiber sequence.

This establishes that $E \cong \mathbf{D}_n \mathbf{R}_n$, and a dual argument gives the opposite direction.

Taylor coefficients

FI-calculus

Kaya Arro

Introduction

Representation stability

Polynomial Fl-objects

Homogeneous Fl-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

Definition

For $E \in FIV$ we denote by CE(n) the \mathfrak{S}_n -object corresponding to $\mathbf{D}_n E$ (this is $\mathbf{R}_n \mathbf{D}_n E(n)$) and we call CE(n) the *n*th Taylor coefficient of E. We define Taylor coefficients of formal Taylor towers in the same fashion.

Taylor coefficients

FI-calculus

Kaya Arro

Introduction

Representation stability

Polynomial Fl-objects

Homogeneou: Fl-objects

Taylor coefficients

Representatior stability revisited

Generalizations References

Definition

For $E \in FIV$ we denote by CE(n) the \mathfrak{S}_n -object corresponding to $\mathbf{D}_n E$ (this is $\mathbf{R}_n \mathbf{D}_n E(n)$) and we call CE(n) the *n*th Taylor coefficient of E. We define Taylor coefficients of formal Taylor towers in the same fashion.

The Taylor coefficients CE(n) can be calculated directly from E in terms of certain cross-effects. In forthcoming work, Bridget Schreiner shows that these cross effects are themselves useful tools for calculating the homology of FI-spaces, especially those with representation stable homology.

Representables

FI-calculus

Kaya Arro

Introduction

Representation stability

Polynomial FI-objects

Homogeneou Fl-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

Definition

For $X \in \mathcal{V}$, define

$$\mathsf{F}_{n,X} \stackrel{\mathrm{def}}{=} k \mapsto \mathsf{Fl}(n,k) \otimes X \colon \mathsf{Fl} o \mathcal{V}$$

Representables

FI-calculus

Kaya Arro

Introduction

Representatio stability

Polynomial Fl-objects

Homogeneous FI-objects

Taylor coefficients

Representationstability revisited

Generalization

References

Definition

For $X \in \mathcal{V}$, define

$$\mathsf{F}_{n,X} \stackrel{\mathrm{def}}{=} k \mapsto \mathsf{Fl}(n,k) \otimes X \colon \mathsf{Fl} o \mathcal{V}$$

Theorem

$$\mathbf{C}F_{X,n}(k)\cong \mathrm{Fl}(k,n)\pitchfork X$$

Coefficients of representables

FI-calculus

Kaya Arro

Introduction

Representation stability

Polynomial FI-objects

Homogeneous FI-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

Corollary

For $E \in FIV$ or $E \in FTTV$, **C**E is an FI-object!

Coefficients of representables

FI-calculus

Kaya Arro

Introduction

Representation stability

Polynomial Fl-objects

Homogeneou Fl-objects

Taylor coefficients

Representation stability revisited

Generalization

References

Corollary

For $E \in FIV$ or $E \in FTTV$, **C**E is an FI-object!

Theorem

Suppose that the Tate construction vanishes for \mathfrak{S}_n -objects in \mathcal{V} , as when $\mathcal{V} = \mathcal{S}p^{\mathbb{Q}}$. Then

 $\textbf{C}\colon \mathrm{FTT}\mathcal{V}\simeq \mathsf{FI}\mathcal{V}$

Representation stability redux: the key calculuation

FI-calculu

Kaya Arro

Introduction

Representatio stability

Polynomial Fl-objects

Homogeneou Fl-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

For $\mathcal{V} = \mathcal{S}p$,

Theorem

$$\mathbf{D}_n F_{\mathbb{S},n}(k) \cong \Sigma^{\infty-n} S_* BP(n,k)$$

where S_* is unreduced suspension that makes one cone point a base point, B is the classifying space of a poset, and P(n, k) is the poset of non-empty partial bijections between (n) and (k).

Representation stability redux: the key calculuation

FI-calculu:

Kaya Arro

Introduction

Representatio stability

Polynomial Fl-objects

Homogeneo Fl-objects

Taylor coefficients

Representation stability revisited

Generalization

References

For $\mathcal{V} = \mathcal{S}p$,

Theorem

$$\mathbf{D}_n F_{\mathbb{S},n}(k) \cong \Sigma^{\infty-n} S_* BP(n,k)$$

where S_* is unreduced suspension that makes one cone point a base point, B is the classifying space of a poset, and P(n, k) is the poset of non-empty partial bijections between (n) and (k).

Theorem

F

For
$$k \geq 2n-1$$
, $\mathbf{D}_n F_{\mathbb{S},n}(k)$ is a wedge of copies of \mathbb{S} .

Representation stability redux: the key calculuation

FI-calculu:

Kaya Arro

Introduction

Representatio stability

Polynomial Fl-objects

Homogeneo Fl-objects

Taylor coefficients

Representation stability revisited

Generalizatior

References

For $\mathcal{V} = \mathcal{S}p$,

Theorem

$$\mathbf{D}_n F_{\mathbb{S},n}(k) \cong \Sigma^{\infty-n} S_* BP(n,k)$$

where S_* is unreduced suspension that makes one cone point a base point, B is the classifying space of a poset, and P(n, k) is the poset of non-empty partial bijections between (n) and (k).

Theorem

For
$$k \geq 2n - 1$$
, $\mathbf{D}_n F_{\mathbb{S},n}(k)$ is a wedge of copies of \mathbb{S} .

As an eventual result of this, the representations appearing in the stable range of a representation stable FI-module can be directly read off from its Taylor coefficients.

A general framework

FI-calculus

Kaya Arro

Introduction

Representatio stability

Polynomial Fl-objects

Homogeneou Fl-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

We can generalize some of the results of FI-calculus to more general settings.

A general framework

FI-calculus

Kaya Arro

Introduction

Representatio stability

Polynomial FI-objects

Homogeneou Fl-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

We can generalize some of the results of FI-calculus to more general settings.

Let C be an ∞ -category and $\{\mathfrak{D}_i\}$ a sequence of families of diagrams (e.g. cubes) in C satisfying a number of properties

A general framework

FI-calculus

Kaya Arro

Introduction

Representatio stability

Polynomial FI-objects

Homogeneou FI-objects

Taylor coefficients

Representatio stability revisited

Generalization

References

We can generalize some of the results of FI-calculus to more general settings.

Let C be an ∞ -category and $\{\mathfrak{D}_i\}$ a sequence of families of diagrams (e.g. cubes) in C satisfying a number of properties

We obtain a Taylor tower as well as a classification of n-homogeneous functors in terms of Taylor coefficients

$$\mathcal{C}_n \setminus \mathcal{C}_{n-1} \to \mathcal{V}$$

The axioms

FI-calculus

Kaya Arro

Introduction

Representatio stability

Polynomial Fl-objects

Homogeneou: Fl-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

 For *I* the domain of a diagram in some D_i, *I* has initial and terminal objects and *I*-diagrams in stable ∞-categories are limit diagrams if and only if they are colimit diagrams.

The axioms

FI-calculus

Kaya Arro

- Introduction
- Representatio stability
- Polynomial FI-objects
- Homogeneou FI-objects
- Taylor coefficients
- Representation stability revisited
- Generalizations
- References

- For \mathcal{I} the domain of a diagram in some \mathfrak{D}_i , \mathcal{I} has initial and terminal objects and \mathcal{I} -diagrams in stable ∞ -categories are limit diagrams if and only if they are colimit diagrams.
 - If a functor F: C → V sends all diagrams in D_n to limit diagrams, then it necessarily sends all diagrams in D_{n+1} to limit diagrams.

The axioms

FI-calculus

Kaya Arro

- Introduction
- Representatio stability
- Polynomial FI-objects
- Homogeneou Fl-objects
- Taylor coefficients
- Representation stability revisited
- Generalization
- References

- For *I* the domain of a diagram in some D_i, *I* has initial and terminal objects and *I*-diagrams in stable ∞-categories are limit diagrams if and only if they are colimit diagrams.
 - If a functor F: C → V sends all diagrams in D_n to limit diagrams, then it necessarily sends all diagrams in D_{n+1} to limit diagrams.
 - Denote by C_i⁰ = C_i and C_iⁿ⁺¹ the full sub-∞-category of objects that are either in C_iⁿ or are the terminal objects in some diagram in D_i that otherwise takes values in C_iⁿ. We require that C = U_nC_iⁿ.

Cartesian fibrations

FI-calculus

Kaya Arro

Introduction

Representatio stability

Polynomial Fl-objects

Homogeneou Fl-objects

Taylor coefficients

Representation stability revisited

Generalizations

References

Suppose $\ensuremath{\mathcal{C}}$ satisfies the required axioms, and let

 $\varpi\colon \mathcal{D}\to \mathcal{C}$

be a Cartesian fibration. Then $\mathcal D$ inherits a functor calculus from $\mathcal C$.

Cartesian fibrations

FI-calculus

Kaya Arro

Introduction

Representatio stability

Polynomial Fl-objects

Homogeneo FI-objects

Taylor coefficients

Representatior stability revisited

Generalization

References

Suppose $\ensuremath{\mathcal{C}}$ satisfies the required axioms, and let

 $\varpi\colon \mathcal{D}\to \mathcal{C}$

be a Cartesian fibration. Then \mathcal{D} inherits a functor calculus from \mathcal{C} .

When C = FI and ϖ is a right fibration, the Taylor coefficients of a D-object carry the structure of a D-object themselves, just as in the case of FI.

An example

FI-calculus

Kaya Arro

Introduction

Representatic stability

Polynomial Fl-objects

Homogeneou Fl-objects

Taylor coefficients

Representation stability revisited

Generalization

References

Fix a manifold M and let $\operatorname{Braid}_M \stackrel{\text{def}}{=} \operatorname{FI} \downarrow M$ – i.e. the category in which objects are configurations of marked points in M and morphisms are braids.

Braid_M admits a functor calculus analogous to FI-calculus in which the Taylor coefficients carry the structure of a **Braid**_M-object.

- [Chu11] Thomas Church. "Homological stability for configuration spaces of manifolds". In: *Inventiones mathematicae* 188.2 (Sept. 2011), pp. 465–504. DOI: 10.1007/s00222-011-0353-4.
- [CF13] Thomas Church and Benson Farb. "Representation theory and homological stability". In: Advances in Mathematics 245 (Oct. 2013), pp. 250–314. DOI: 10.1016/j.aim.2013.06.016. URL: https://doi.org/10.1016/j.aim.2013.06.016.
- [Chu+14] Thomas Church et al. "FI-modules over Noetherian rings". In: Geometry & Topology 18.5 (Dec. 2014), pp. 2951–2984. DOI: 10.2140/gt.2014.18.2951. URL: https://doi.org/10.2140/gt.2014.18.2951.
- [Jim11] Rita Jiménez Rolland. "Representation stability for the cohomology of the moduli space Mgn". In: Algebraic & Geometric Topology 11.5 (Dec. 2011), pp. 3011–3041. DOI: 10.2140/agt.2011.11.3011.

[JW22] Rita Jiménez Rolland and Jennifer C. Wilson. "Stability properties of moduli spaces". In: Notices of the American Mathematical Society 69.04 (Apr. 2022), p. 1. DOI: 10.1090/noti2452.

The End